a2zpapers.com

Exam. Code : 103201
 Subject Code : 1028

B.A./B.Sc. $\mathbf{1}^{\text {st }}$ Semester
 MATHEMATICS

Paper-I (Algebra)

Time Allowed-Three Hours] [Maximum Marks-50
Note :-Attempt FIVE questions in all, selecting at least ONE question from each section. All questions carry equal marks.

SECTION-A

1. (a) Define the rank of a matrix. Compute the rank of
the matrix $A=\left[\begin{array}{rrr}1 & 5 & 3 \\ -1 & 3 & 5 \\ 1 & 0 & -2\end{array}\right]$ by reducing
it to an equivalent matrix of the form $P A Q=\left[\begin{array}{cc}I_{r} & 0 \\ 0 & 0\end{array}\right]$.
(b) Find the row rank of the matrix :

$$
A=\left[\begin{array}{rrrr}
1 & 2 & -1 & 3 \\
4 & 1 & 2 & 1 \\
3 & -1 & 1 & 2 \\
1 & 2 & 0 & 1
\end{array}\right]
$$

39(2118)/DAG-6492
2. (a) State condition under which a set of homogeneous equations possess a (i) trivial solution or (ii) nontrivial solution, why?
(b) If $A=\left[\begin{array}{lll}2 & 1 & 1 \\ 1 & 1 & 1 \\ 3 & 1 & 1\end{array}\right], B=\left[\begin{array}{l}b_{1} \\ b_{2} \\ b_{3}\end{array}\right]$, then show that the system $\mathrm{AX}=\mathrm{B}$ is consistent if and only if

$$
b_{3}-2 b_{1}+b_{2}=0 \text { where } X=\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]
$$

SECTION-B

3. (a) Prove that any two characteristic vectors corresponding to two distinct characteristic roots of a unitary matrix are orthogonal.
(b) Determine eigen values and the corresponding
eigen-vectors for the matrix $A=\left[\begin{array}{rrr}1 & 0 & -1 \\ 1 & 2 & 1 \\ 2 & 2 & 3\end{array}\right]$.
4. (a) Verify Cayley Hamilton theorem for the matrix

$$
A=\left[\begin{array}{rrr}
1 & \sqrt{2} & 0 \\
\sqrt{2} & -1 & 0 \\
0 & 0 & 1
\end{array}\right] \text { and find } A^{-1}
$$

(b) Write down the quadratic form corresponding to the symmetric matrix :

$$
\left[\begin{array}{llll}
0 & 1 & 2 & 3 \\
1 & 2 & 3 & 4 \\
2 & 3 & 4 & 5 \\
3 & 4 & 5 & 6
\end{array}\right]
$$

SECTION-C

5. (a) Define congruent matrices and explain its fundamental properties.
(b) Show that if A is any n-rowed non-zero symmetric matrix of rank r over a field F , then there exists an n-rowed non-singular matrix P over F , such that $P^{\prime} A P=\left[\begin{array}{cc}A_{1} & 0 \\ 0 & 0\end{array}\right]$, where A_{1} is a nonsingular r-rowed diagonal matrix over F and each O , is a zero matrix of the appropriate type.
6. (a) Reduce the following to canonical form and find the rank and index :

$$
x^{2}-2 y^{2}+3 z^{2}-4 y z+5 z x
$$

(b) Show that the form $\mathrm{x}_{1}^{2}+2 \mathrm{x}_{2}^{2}+3 \mathrm{x}_{3}^{2}+2 \mathrm{x}_{2} \mathrm{x}_{3}-2 \mathrm{x}_{3} \mathrm{x}_{1}+2 \mathrm{x}_{1} \mathrm{x}_{2}$ is indefinite and find two set of values of x_{1}, x_{2}, x_{3} for which the form assumes positive and negative values.

SECTION-D

7. (a) If α, β, γ are the roots of the equation $2 \mathrm{x}^{3}-6 \mathrm{x}^{2}+3 \mathrm{x}+\mathrm{k}=0$ such that $\alpha=2(\beta+\gamma)$, find k and solve the equation.
(b) If $\alpha, \beta, \gamma, \delta$ are the roots of the equation $x^{4}+a x^{2}+b x+c=0$ find the value of $\sum \frac{\beta+\gamma-\delta-\alpha}{2 \alpha^{2}}$
8. (a) If $q>0, r>0$ then prove that the cubic $\mathrm{x}^{3}+\mathrm{qx}+\mathrm{r}=0$ has one negative and two imaginary roots.
(b) Solve by Ferrari's method :

$$
x^{4}-2 x^{3}-5 x^{2}+10 x-3=0
$$

