Exam. Code : 103201 Subject Code : 1028

B.A./B.Sc. 1st Semester MATHEMATICS Paper—I (Algebra)

Time Allowed—Three Hours] [Maximum Marks—50

Note :— Attempt FIVE questions in all, selecting at least ONE question from each section. All questions carry equal marks.

SECTION-A

1. (a) Define the rank of a matrix. Compute the rank of

the matrix $A = \begin{bmatrix} 1 & 5 & 3 \\ -1 & 3 & 5 \\ 1 & 0 & -2 \end{bmatrix}$ by reducing

it to an equivalent matrix of the form

$$\mathbf{PAQ} = \begin{bmatrix} \mathbf{I}_r & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{bmatrix}.$$

(b) Find the row rank of the matrix :

$$\mathbf{A} = \begin{bmatrix} 1 & 2 & -1 & 3 \\ 4 & 1 & 2 & 1 \\ 3 & -1 & 1 & 2 \\ 1 & 2 & 0 & 1 \end{bmatrix}.$$

39(2118)/DAG-6492

(Contd.)

www.a2zpapers.com www.a2zpapers.com ad free old Question papers gndu, ptu hp board, punjab

2. (a) State condition under which a set of homogeneous equations possess a (i) trivial solution or (ii) non-trivial solution, why ?

(b) If
$$A = \begin{bmatrix} 2 & 1 & 1 \\ 1 & 1 & 1 \\ 3 & 1 & 1 \end{bmatrix}$$
, $B = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}$, then show that

the system AX = B is consistent if and only if

$$\mathbf{b}_3 - 2\mathbf{b}_1 + \mathbf{b}_2 = 0$$
 where $\mathbf{X} = \begin{bmatrix} \mathbf{x} \\ \mathbf{y} \\ \mathbf{z} \end{bmatrix}$.

SECTION-B

- (a) Prove that any two characteristic vectors corresponding to two distinct characteristic roots of a unitary matrix are orthogonal.
 - (b) Determine eigen values and the corresponding

eigen-vectors for the matrix
$$A = \begin{bmatrix} 1 & 0 & -1 \\ 1 & 2 & 1 \\ 2 & 2 & 3 \end{bmatrix}$$
.

4. (a) Verify Cayley Hamilton theorem for the matrix

$$A = \begin{vmatrix} 1 & \sqrt{2} & 0 \\ \sqrt{2} & -1 & 0 \\ 0 & 0 & 1 \end{vmatrix} \text{ and find } A^{-1}.$$

39(2118)/DAG-6492

(Contd.)

www.a2zpapers.com www.a2zpapers.com oad free old Question papers gndu, ptu hp board, punjab

2

(b) Write down the quadratic form corresponding to the symmetric matrix :

0	1	2	37	
1	2	3	4	
2	3	4	5	
		5		

SECTION-C

- 5. (a) Define congruent matrices and explain its fundamental properties.
 - (b) Show that if A is any n-rowed non-zero symmetric matrix of rank r over a field F, then there exists an n-rowed non-singular matrix P over F, such

that
$$P'AP = \begin{bmatrix} A_1 & 0 \\ 0 & 0 \end{bmatrix}$$
, where A_1 is a non-

singular r-rowed diagonal matrix over F and each O, is a zero matrix of the appropriate type.

6. (a) Reduce the following to canonical form and find the rank and index :

 $x^2 - 2y^2 + 3z^2 - 4yz + 5zx.$

(b) Show that the form x₁² + 2x₂² + 3x₃² + 2x_{x₃} - 2x_{x₁} + 2x_{x₂} is indefinite and find two set of values of x₁, x₂, x₃ for which the form assumes positive and negative values.

39(2118)/DAG-6492

3

(Contd.)

www.a2zpapers.com www.a2zpapers.com ad free old Question papers gndu, ptu hp board, punjab

SECTION-D

- 7. (a) If α , β , γ are the roots of the equation $2x^3 - 6x^2 + 3x + k = 0$ such that $\alpha = 2(\beta + \gamma)$, find k and solve the equation.
 - (b) If α , β , γ , δ are the roots of the equation $x^4 + ax^2 + bx + c = 0$ find the value of

$$\sum \frac{\beta + \gamma - \delta - \alpha}{2\alpha^2}$$

- 8. (a) If q > 0, r > 0 then prove that the cubic x³ + qx + r = 0 has one negative and two imaginary roots.
- (b) Solve by Ferrari's method :

 $x^4 - 2x^3 - 5x^2 + 10x - 3 = 0.$

39(2118)/DAG-6492

9000

www.a2zpapers.com www.a2zpapers.com oad free old Question papers gndu, ptu hp board, punjab

4